Structure of a multipartite protein-protein interaction domain in splicing factor prp8 and its link to retinitis pigmentosa.

نویسندگان

  • Vladimir Pena
  • Sunbin Liu
  • Janusz M Bujnicki
  • Reinhard Lührmann
  • Markus C Wahl
چکیده

Protein Prp8 interacts with several other spliceosomal proteins, snRNAs, and the pre-mRNA and thereby organizes the active site(s) of the spliceosome. The DEAD-box protein Brr2 and the GTPase Snu114 bind to the Prp8 C terminus, a region where mutations in human Prp8 are linked to the RP13 form of Retinitis pigmentosa. We show crystallographically that the C-terminal domain of yeast Prp8p exhibits a Jab1/MPN-like core known from deubiquitinating enzymes. Insertions and terminal appendices are grafted onto this core, covering a putative isopeptidase center whose metal binding site is additionally impaired. Targeted yeast-two-hybrid analyses show that the RP13-linked region in the C-terminal appendix of human Prp8 is essential for binding of human Brr2 and Snu114, and that RP13 point mutations in this fragment weaken these interactions. We conclude that the expanded Prp8 Jab1/MPN domain represents a pseudoenzyme converted into a protein-protein interaction platform and that dysfunction of this platform underlies Retinitis pigmentosa.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel regulatory principles of the spliceosomal Brr2 RNA helicase and links to retinal disease in humans.

For each round of pre-mRNA splicing, a spliceosome is assembled anew on its substrate. RNA-protein remodeling events required for spliceosome assembly, splicing catalysis, and spliceosome disassembly are driven and controlled by a conserved group of ATPases/RNA helicases. The activities of most of these enzymes are timed by their recruitment to the spliceosome. The Brr2 enzyme, however, which m...

متن کامل

Inhibition of RNA helicase Brr2 by the C-terminal tail of the spliceosomal protein Prp8.

The Ski2-like RNA helicase Brr2 is a core component of the spliceosome that must be tightly regulated to ensure correct timing of spliceosome activation. Little is known about mechanisms of regulation of Ski2-like helicases by protein cofactors. Here we show by crystal structure and biochemical analyses that the Prp8 protein, a major regulator of the spliceosome, can insert its C-terminal tail ...

متن کامل

Structural Basis of Brr2-Prp8 Interactions and Implications for U5 snRNP Biogenesis and the Spliceosome Active Site

The U5 small nuclear ribonucleoprotein particle (snRNP) helicase Brr2 disrupts the U4/U6 small nuclear RNA (snRNA) duplex and allows U6 snRNA to engage in an intricate RNA network at the active center of the spliceosome. Here, we present the structure of yeast Brr2 in complex with the Jab1/MPN domain of Prp8, which stimulates Brr2 activity. Contrary to previous reports, our crystal structure an...

متن کامل

Effects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation

Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...

متن کامل

Disease mechanism for retinitis pigmentosa (RP11) caused by missense mutations in the splicing factor gene PRPF31

PURPOSE Missense mutations in the splicing factor gene PRPF31 cause a dominant form of retinitis pigmentosa (RP11) with reduced penetrance. Missense mutations in PRPF31 have previously been shown to cause reduced protein solubility, suggesting insufficiency of functional protein as the disease mechanism. Here we examine in further detail the effect of the A216P mutation on splicing function. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cell

دوره 25 4  شماره 

صفحات  -

تاریخ انتشار 2007